
1

A Whole Surface Approach to Crowd Simulation
on Arbitrary Topologies
Brian C. Ricks & Parris K. Egbert Member, IEEE

Abstract—Recent crowd simulation algorithms do path planning on complex surfaces by breaking 3D surfaces into a series of 2.5D
planes. This allows for path planning on surfaces that can be mapped from 3D to 2D with distortion, such as multistory buildings.
However, the 2.5D approach does not handle path planning on curved surfaces such as spheres, asteroids, or insect colonies.
Additionally, the 2.5D approach does not handle the complexity of dynamic obstacle avoidance when agents can walk on walls or
ceilings. We propose novel path planning and obstacle avoidance algorithms that work on surfaces as a whole instead of breaking
them into a 2.5D series of planes. Our “whole surface” approach simulates crowds on both multistory structures and highly curved
topologies without changing parameters. We validate our work on a suite of 30 different meshes, some with over 100,000 triangles,
with crowds of 1,000 agents. Our algorithm always averaged more than 40 FPS with virtually no stalling.

Index Terms—Crowd Simulation, 3D Crowd Simulation, Path Planning, Obstacle Avoidance

F

1 INTRODUCTION

ANIMATED films, special effect scenes, and games
rely heavily on crowd simulation algorithms. Pre-

vious research has produced believable crowds in full
3D environments (such as flocks of birds) and 2D envi-
ronments (such as crowds on flat surfaces). However, in
between full 3D and 2D motion lies the important and
emerging field of crowd simulation on arbitrary mani-
folds. Unlike full 3D environments, crowds on arbitrary
surfaces are constrained to manifolds. Unlike traditional
2D crowds, the geometry of arbitrary surfaces adds
new and largely unsolved path planning and dynamic
obstacle avoidance problems.

Crowd simulation on arbitrary manifolds is applicable
on any surface that cannot be approximated by a plane
plus a height map. These surfaces include multistory
structures such as skyscrapers, subways, and cruise
ships; natural structures such as caves and arches; ex-
traterrestrial surfaces such as asteroids, space stations,
and spaceships; and surfaces where insects swarm, such
as nests, colonies, floors, walls, or ceilings. Movies with
these types of crowds include films with bizarre topolo-
gies such as Inception, films centering around multistory
structures such as Titanic, and science fiction films set
on asteroids such as Armageddon or in spacecraft such
as 2001: A Space Odyssey. Even the video game industry
has seen the rise of characters on complex topologies as
in the Mario Galaxy series.

Simulating crowds on arbitrary surfaces introduces
new challenges to both path planning and obstacle
avoidance. Recent academic and commercial middle-

• B. Ricks and P. Egbert are with the Department of Computer Science,
Brigham Young University, Provo, UT, 84606.
E-mail: bricks@byu.edu, egbert@cs.byu.edu

ware algorithms handle path planning by breaking sur-
faces into a series of planes. This is effective for surfaces
that map to a set of planes without distortion. However,
crowd simulation algorithms are needed for surfaces that
do not map to a series of planes without distortion—
including many of the films just mentioned. Also, the
literature does not address the complexity of dynamic
obstacle avoidance on arbitrary topologies.

Our goal is to resolve these issues and to increase
the set of surfaces on which we can simulate crowds.
To do this, we propose a “whole surface” approach
to crowd simulation. Our contributions include both
novel path planning and obstacle avoidance algorithms.
Our proposed path planning approach improves discrete
geodesic algorithms to produce quality motion at real-
time rates (Sec. 3). Our approximate vision algorithm
allows robust obstacle avoidance on arbitrary surfaces
without collision false positives and false negatives
(Sec. 4). As validation, we show that our algorithm cor-
rectly and quickly produces natural movement (Sec. 5).
Combined, our whole surface approach accurately simu-
lates crowds on a far larger set of surfaces than possible
before.

2 PREVIOUS WORK

We explain our work in the context of path planning, ob-
stacle avoidance, and arbitrary surface crowd simulation
research.

2.1 Global Path Planning
2D path planning has its roots in graph-based path plan-
ners, which run run quickly but often produce jagged
results. Research relevant in improving jagged paths
includes line of sight smoothing [1], [2] or more accurate
algorithms such as fast marching methods [3].

2

Fig. 1. Our test surfaces: (a) a tetrahedron, (b) the asteroid Golevka, (c) a torus, (d) a mobius strip with holes, (e) the
Stanford Bunny, (f) a globe, (g) ants on a tree, (h) ants on a piece of food, (i) ants swarming inside a house, and
(j) people in a multistory building. Bunny courtesy Stanford Computer Graphics Laboratory. Asteroids courtesy Scott
Hudson, Washington State University, http://users.tricity.wsu.edu/˜hudson/Research/Asteroids/models.html.

Advanced 2D path planning algorithms take into
account clearance around static obstacles and have a
sense of path width to avoid jams. These are often
called navigation mesh approaches. Such works in-
clude Geraert’s corridor maps [4], Kallmann’s navigation
queries on planar triangular meshes [5], Kamphuis et
al.’s roadmaps [6], Pettré et al.’s navigation graphs [7],
Lamarche and Donikian’s constrained Delaunay trian-
gulation [1], Hale’s use of watershed partitioning [8],
and Curtis et al.’s way portals [9]. These algorithms also
work well on surfaces that have a distortion-free map
from 3D to 2.5D. We explore why navigation meshes are
insufficient for arbitrary surfaces in Sec. 3.2.

Other researchers have looked at path planning on
3D surfaces, but not in the context of crowd simulation
applications. One of the earliest exact solutions came
from Mitchell et al. [10] who could guarantee finding
the shortest path on a surface (i.e. discrete geodesics)
with a complexity of O(n2log n). This time bound was
improved by Chen and Han [11] to O(n2). Faster ap-
proaches include Martinez et al. [12] who iteratively
refine an approximate shortest path. A quite powerful
discrete geodesic method was proposed by Kimmel and
Sethian [13] based on the fast marching method. Our
framework is designed to improve results from any
discrete geodesic algorithm for crowd simulation.

2.2 Local Obstacle Avoidance

Most 2D obstacle avoidance techniques trace their roots
to Reynolds’ work on flocking dynamics [14] that used
instantaneous forces to avoid collisions. Helbing and
Molnár [15] proposed a similar 2D instantaneous forces
method called social forces. To address the jamming
and stalling inherent with these methods, Fiorini and
Shiller [16] introduced velocity obstacles. This method

has numerous extensions, including van den Berg et al.’s
reciprocal velocity obstacles (RVO) [17]. More recently,
Guy et al. [18] changed RVO to optimize over agent
effort.

Other work focused on the efficiency and believability
of 2D crowd simulation. Courty and Musse [19] pro-
posed GPU social forces. Narain et al. [20] simulated tens
of thousands of agents using Euclidean and Lagrangian
methods. Karamouzas et al. [21] achieved similar speed
results with their collision prediction model. Singh et
al. [22] created a crowd simulation algorithm using A*
planning to find footstep patterns for agents. Represent-
ing each agent as five circles, their algorithm created
realistically dense crowds. Pelechano et al.’s HiDAC
algorithm [23] simulated large panic situations. Other
work simulates crowds as a flow or continuum. Both
Treulle et al. [24] and Jiang et al. [25] created large
crowds this way. Others have worked on objectively
evaluating crowd simulation [26], [27], [28]. Notable
among these is the Singh et al.’s SteerBench project [29],
[30]. This work is part of StreerSuite [31], an open-source
platform for creating and evaluating steering algorithms.

This obstacle avoidance work has culminated in
crowds that deftly avoid collisions in 2D and on surfaces
that break down into a series of 2.5D planes (for surveys
see [32] and [33]).

2.3 Crowds on Arbitrary Topologies

Some previous work has addressed the issue of crowds
on non-planar surfaces, often by breaking surfaces into
a series of 2.5D planes. Shao and Terzopoulos [34] cre-
ated a model of New York City’s original Pennsylvania
station this way. Lamarche [35] proposed a method for
character motion with features such as ducking under
ceilings, but the algorithm approximated the 3D surface

3

with a 2D plane. Similarly, Jiang et al. [25], [36] broke
down complex environments into blocks, each of which
can be mapped to a regular grid. Deusdada et al. [37]
did the same using an image-based approach. Authors
van Toll et al. [38] expanded navigation meshes for
multistory structures, but not arbitrary surfaces.

Rodriguez et al.’s work broke buildings into 2D sub-
sections for pursuit-evasion applications [39]. Sturtevant
and Geisberger [40] presented a grid method for path
planning using multiple levels of abstraction. Stoyanov
et al. [41] proposed a path planner for robotic applica-
tions on arbitrary 3D point cloud data. Unfortunately,
this approach is too slow to generate large crowds at
real-time speeds. Jund et al. [42] used a multiresolution
grid to find dynamic obstacles on surfaces, but their
approach only judged distances of the surface, which
would result in collision false positives. Also, they did
not deal with corridors around sharp edges and turns.
Levine et al.’s work [43] provided an algorithm for char-
acter locomotion through complex environments with
dynamic obstacles. The resulting agent movement was
impressive, but their algorithm broke the agent-based
paradigm of crowd simulation algorithms (as did the
work of Singh et al. [22] discussed above). Similar to the
approach we propose, Torchelsen et al. [44] used discrete
geodesics to do crowd simulation on continuous 3D sur-
faces. While the results are pioneering, the meshes used
do not have any edges or sharp curves. Additionally, it
only allowed a limited number of destinations for agents,
the algorithm used a very simple GPU-based obstacle
avoidance method, and the algorithm could struggle
from clear false positive artifacts.

In summary, current research effectively simulates
crowds in 2D or on a series of planes. However, we have
found no previous algorithms that can robustly handle
crowds on both highly curved surfaces (such as asteroids
and tree branches) and multistory buildings (such as
apartment buildings or offices). The goal of our work
is to expand the set of surfaces on which crowds can be
simulated to include surfaces of any topology.

3 PATH PLANNING

The first part of our surface as a whole approach is our
path planning algorithm. The goal of a path planning
algorithm is to find a path from an agent’s initial position
to the agent’s destination. To do path planning, we
define a function Plan that takes the current agent’s
initial position, ap, destination, ad, and the surface mesh,
mesh, and produces an ordered list of waypoints, W as
follows:

Plan : ap, ad,mesh→W (1)

The goal of the path planning piece of a crowd simu-
lation algorithm is to find an implementation of Plan
that produces natural motion for agents. The geometry
of arbitrary surfaces is far more complex on arbitrary
surfaces than it is in 2D. Thus, our main path planning
contributions include an implementation of Eqn. 1 that

creates corridors and does line of sight smoothing even
on arbitrary surfaces.

Note that like previous crowd simulation work, we
take two mesh inputs into our algorithm. The “surface
mesh” represents where agents can move. The “render
mesh” is used to render the scene. For example, consider
simulating people in an office building. In this case the
surface mesh would only contain triangles that belong
to the floor where the agents can move. The render
mesh would contain all the triangles to be rendered,
including the floor, walls, and ceiling. On the other hand,
if we were simulating ants in that same office building
we would give the full office mesh as both the surface
and render meshes. In this work we do not address
the problem of automatically finding the walkable areas
of a given mesh since there are already very effective
algorithms for this task (e.g. [35]). All the figures in this
paper show the surface mesh the crowd is using.

3.1 Stalling
Real crowds exhibit little stalling, i.e., people rarely jam
for long periods of time. Instead, in real crowds people
move naturally around each other en route to their
destinations. Our experience has been that stalling is an
effective quantitative measure of the realism of a crowd.
Additionally, we have found that when we use a modern
obstacle avoidance algorithm, crowd stalling is almost
always a symptom of poor path planning.

To motivate our discussion of path planning for ar-
bitrary surfaces, we begin with our five properties of
effective path planning. In our experience, a path planner
that has these properties will have almost no stalling
and the crowd movement will be natural. These have
been discussed less formally in previous work, but we
explicitly list them here as a guide for our work. First,
paths that produce natural motion will lead an agent
from ap to ad. Second, each waypoint on the path should
be on our surface. Let P(A) be the powerset of A. If
S is the set of all points on our triangular mesh with
S ∈ P(R3), then it follows that we want W ∈ P(S).
Third, paths should not cross static obstacles. Fourth, we
want path planners to work on a large set of surfaces
without manually tuning parameters. If an implementa-
tion of Plan in Eqn. 1 has these four attributes then the
path should lead a single agent to its destination without
stalling. In multiagent scenarios, particularly when there
are corners or tight halls, agents will deviate from W to
avoid other agents. Thus, we add a fifth property for
stalling-free path planners: Plan should produce a path
with width.

Most 2D and 2.5D algorithms fail to meet the fourth
or fifth properties when used on arbitrary surfaces. 2.5D
crowd planning algorithms that work on multistory
structures such as [25], [36] would fail on curved surfaces
such as ants on a tree or astronauts on an asteroid (our
fourth criterion). Algorithms that do focus on highly
curved surfaces such as [44] would fail on the complex-
ities of multistory structures, especially around corners

4

and up stairs (our fifth criteria). We propose a surface
as a whole path planning algorithm that tries to keep
all these five properties. Our resulting algorithm moves
agents on arbitrary topologies with little or no stalling.

3.2 Discrete Geodesics
Our surfaces as a whole path planning approach uses
discrete geodesics and adds key improvements de-
signed for crowd simulation. However, one of our early
thoughts was to use navigation meshes. By breaking
surfaces into higher-level structures, navigation mesh
algorithms seemed to have two advantages: they might
run faster and they might lead to easy corridor creation.
As noted in our previous work section, this approach
has been used successfully in the specific domain of
multistory buildings. However, the goal of our work
is to expand the domain of crowd simulation surfaces
to any topology and we discovered that in this domain
navigation meshes are not always the right approach.

Consider the trivial case of an ant on a cube. As-
sume the ant is on the top face with a destination on
the bottom. How can we apply navigation meshes to
this surface? We could unfold the cube and then use
navigation meshes. Unfortunately unfolding in ambigu-
ous: One unfolding would lead the ant directly to the
destination while another would lead the ant across
every face before reaching the destination. Thus each
time a path is planned the surface would need to be
uniquely unfolded, thus defeating the goal of having a
navigation mesh that can be used for all path planning.
Additionally, when a surface is unfolded, it can appear
that pieces of the surface are not connected when they
really are. Another approach would be to leave the cube
together and group triangles into regions that are not
separated by obstacles. Unfortunately, since there are no
static obstacles on a cube, the entire cube could be the
same region. Thus, this approach would not provide any
path planning information.

Thus, we use discrete geodesics for two reasons. First,
discrete geodesics are complete since they always find a
path to the destination if one exists (more in our results
section). Navigation meshes, on the other hand, will only
work if we strictly limit the domain of surface meshes.
Second, discrete geodesics algorithms are fast enough for
real-time crowd simulation (more in our results section).
Additionally, by using our path improvements, we can
improve discrete geodesics so they create very natural
crowd movement.

3.3 Path Planning Improvement Overview
We use discrete geodesic algorithms for the reasons
listed previously: they find paths on any surface and
they run quickly. However, the linear paths found by
discrete geodesic algorithms need to be improved to
produce natural motion for large crowds. Alg. 1 and
Fig. 2 summarize our three improvements. Fig. 2a shows
an example of an agent traveling on a surface that is

both highly curved and has a corner (e.g. the surface
in Fig. 3). Fig. 2b shows a possible path generated by
a discrete geodesic algorithm. This path is problematic
since it lies directly on static obstacles (the edge of
the hole) and has a jagged, unnatural turn. An agent
following this path could stall because the path lies on
an obstacle, look unnatural by following the jagged path,
or jam if agents are the other way since the path lacks
width. However, since we have used discrete geodesics,
we are guaranteed to have found a path in one exists
to our destination (see our results section). Our main
contribution lies in creating corridors and doing path
smoothing to solve these problems on arbitrary surfaces.

Fig. 2c shows our first improvement: away from edges.
This improvement pushes waypoints away from static
obstacles (see Sec. 3.4). Fig. 2d shows our second im-
provement: corridor expansion. This improvement gives
paths width around static obstacles where jams are most
likely to occur (see Sec. 3.5). These first two improve-
ments run only when an agent requires a new path (i.e.
the start of the simulation or when the agent reaches a
destination). Fig. 2e shows our last improvement: line of
sight. This improvement approximates line of sight on
the surfaces to smooth out jagged paths (see Sec. 3.6).
Quantitative validation of these improvements are given
in our results section, Sec. 5.

3.4 Away From Edges
The paths created by discrete geodesic algorithms do not
by themselves produce prefect paths for crowd simula-
tion. One surface feature where this is very evident is
around walls and corners. These features are frequently
found in building surfaces (see Fig. 1j), science fiction
surfaces (see Fig. 1d), or surfaces where insects swarm
(see Fig. 3). In these cases, shortest paths tend to lie right
along the edges of a surface. For example, consider the
case of a building with an agent whose destination is
on the next floor up. In this case the shortest path to
the destination would lead from the agent to the corner
of the stairs and go up the inside of the stairs to the
next floor. Thus, an agent following this path would
both want to go toward the very inside of the stairs (to
follow the path) and at the same time want to avoid

Fig. 2. Our path planning improvements. a) An agent
going around a corner on a curved surface (e.g. Fig. 3). b)
Initial path. c) Away from the edge (Sec. 3.4). d) Corridors
(Sec. 3.5). e) Line of sight (Sec. 3.6).

5

Algorithm 1 Overview of our path finding approach
1: procedure IMPROVEPATH(ap, ad,mesh)
2: W ← DiscreteGeodesic(ap, ad,mesh)
3: for all w ∈W do
4: if !EdgeV ertice(w) then
5: AddToList(Wimproved, w)
6: else . Improve the waypoint
7: T ← TrianglesWindingFrom(w,wi+1)
8: E ← EdgesAdjacent(w)
9: for all e ∈ E do

10: wt ← w
11: AddToList(Wtemp, wt)

12: for all wt ∈Wtemp do . Away From Edges, Sec. 3.4
13: wt ←MoveAway(w,wt)
14: if !OnEdge(wt) then . Pruning
15: if Contains(T,wt) then . Winding
16: AddToList(Waway, wt)

17: for all wa ∈WAway do . Corridors, Sec. 3.5
18: AddToList(Wimproved, AddWidth(wa))

19: return Wimproved

20: procedure NEXTWAYPOINT(W,a) . Smoothing, Sec. 3.6
21: for all w ∈W do
22: if EdgeV ertice(w) then
23: return w . Edge Waypoints
24: if DivergentNormals(w, a) then
25: return w . Divergent Normals

the very inside stairs (to avoid the static obstacle). This
type of poor path planning results in stalling since as
the obstacle avoidance algorithm cannot move the agent
toward the next waypoint without a collision.

To remove this unnatural behavior, our algorithm im-
proves paths by pushing them away from static obstacles
such . To push paths away from edges, our algorithm
removes edge entries in W and replaces them with new
way points(see Eqn. 1 and Alg. 1 Lines 7–16). We call
this step the “away from edges” step of our algorithm.
Conceptually, this is similar to using a Minkowski sum
to shrink the surface around edges. The difference is that
with our approach an agent in a crowded scenarios can
use the area right next to obstacles if needed. Formally,
our improvement implements a function Away that takes
a waypoint on an edge and replaces it with an improved
list of waypoints.

Away : wi ∈W →Wimproved = 〈w1, w2, ..., wn〉 (2)

Finding the points for Wimproved on a surface of ar-
bitrary topology is a three part process. (Fig. 4 shows
these steps with Fig. 4a showing an example path that
needs to be improved.) The away from edges step begins
by identifying waypoints that lie of static obstacles. For
each waypoint wi ∈W that lies on a static obstacle, our
approach finds all the surface edges the share an end
point at wi. For each edge our algorithm creates a set
of proposed new waypoints at the same location as wi,
each of which is attached to one of these edges. Then
we move each of the proposed waypoints along their
corresponding edge away from the static obstacle. We
move each waypoint approximately an agent’s stride’s

Fig. 3. Ant agents moving on a soccer ball without the
pentagons. Our algorithm handles this surface as easily
as the crowds in Fig. 5 without changing parameters.

width. As noted earlier, this paper does not address
the research area of finding the walkable regions of a
mesh, so we assume that all meshes have walkways
wide enough for this path movement. An example of
this step is shown in Fig. 4b.

After this step proposed waypoints can lie on edges
(again see Fig. 4b). In the second step of the away
from edges improvement we scan over the proposed
waypoints and prune any that are on static obstacles (see
Fig. 4c). Now none of the remaining proposed waypoints
lie on static edges, but notice that we have a sharp
turn in the path. In the third step of the away from
edges improvement our algorithm finds the triangles
that share a vertex at wi. Our algorithm then winds
through these triangles starting with the triangle contain-
ing wi+1 and ending at the triangle containing wi−1. Any
waypoints contained in these triangles are kept while
those not in the triangles are discarded. This last step
smooths the away from edges path naturally as shown
in Fig. 4d. These remaining waypoints are placed in the
set Wimproved in Eqn. 2.

As we discuss in our results section, adding this
away from edges improvement decreased stalling in
our simulations by over an order of magnitude (see
Sec. 5). However, there is still some stalling and we
need addition improvements to prevent stalling around
corners and edges in crowded scenes.

Fig. 4. Replacing waypoints in W with a list of new
points Wimproved. a) Find vertices on edges and b) add
waypoints that are pushed away. c) Prune waypoints on
edges and d) wind around to smooth the path.

6

Fig. 5. Lane formation with our algorithm. Our optimiza-
tions create believable crowds on this surface and the
surface is Fig. 3 without changing parameters.

3.5 Corridors
The away from edges improvement works well in single-
agent scenarios, but in multiagent scenarios paths need
width to avoid stalling. The crowd simulation literature
has proposed many methods of corridor creation in 2D.
Unfortunately, the nature of arbitrary surfaces means
many of these approaches do not work in 3D (see
our navigation meshes discussion above). To give paths
width on arbitrary surfaces, we propose a method of
improved the away from edges step to create corri-
dors. Combined, our away from edges and corridors
algorithms form one of our key contributions to path
planning on arbitrary surfaces.

To create a path with width, our corridors improve-
ment starts with the proposed waypoints generated by
Eqn. 2. Recall that these waypoints were found by
identifying edges that ended at the static obstacle. In
the corridors step we take the waypoints generated in
the previous step and turn them into line segments.
In the away from edges improvement, each proposed
waypoint was attached to a mesh edge. In the corri-
dors step, we create a line segment in the direction
of these mesh lines with one end closer to the static
obstacle and one end further away (see Alg. 1 Lines
17–18). In constructing these corridors we make them
approximately four agent’s width in length. This allows
up to four lanes to develop within the corridor. As noted
earlier, we assume that all meshes are wide enough
(a more precise size could be used if the mesh were
preprocessed by a navigable mesh algorithm). With this
corridor improvement, we change Away (Eqn. 2) to
Corridor : wi ∈W →Wimproved = 〈l1, l2, ..., ln〉 .

The addition of these corridors creates realistic global
crowd dynamics such as lane formation (see Fig. 5). This
behavior is evident both in multistory structures and
curved surface with edges or corners (e.g. Fig. 3 and
Fig. 1d). We quantitatively measure the effectiveness of
our corridors approach in Sec. 5.

3.6 Line of Sight
Thus far we have discussed discrete geodesic algorithms
as a group. In reality, there are many discrete geodesic

algorithms, each with their own relative advantages and
disadvantages. Generally speaking, discrete geodesic al-
gorithms can be characterized as either slower, perfectly
accurate algorithms or faster, less accurate algorithms.
Unfortunately, slower but more accurate algorithms run
too slowly for real-time crowd simulation (see Fig. 12).
Examples of fast enough algorithms include graph-based
planners that find the shortest path across mesh vertices
or mesh triangles (e.g. Dijkstras or A*). These slower
algorithms cannot be used without improvements since
the paths they produce are inherently jagged and lead
to unnatural motion. This problem can be remedied by
using a line of sight algorithm. For the line of sight
improvement we approximate the line of sight for each
agent on our surface. We then let the agent walk to the
furthest waypoint it can see. Thus, agents ignore jagged
turns in their path and head directly to the last point
visible to them. Compared to previous 2D work that
does line of sight smoothing (see Sec. 2), our contribution
is that we quickly smooth paths on arbitrary surfaces.
This is non-trivial since our path is not in 2D.

For this improvement, we assert that an agent’s line
of sight stops under two conditions (see Alg. 1 Lines 20–
25). First, an agent cannot see waypoints around corners.
This is simple to detect in our algorithm since we already
search for static obstacles in our previous improvements.
We simply flag waypoints that have been moved away
from edges and turned into corridors for this purpose.
Second, we stop an agent’s line of sight when the normal
of a waypoint diverges too much from the agent’s cur-
rent normal. This condition prevents agents from seeing
waypoints that are blocked from sight by the curvature
of the surface. For example, consider an ant that is going
around a tree branch. In this case our normal test would
stop the ant’s line of sight where the branch curves
away from the ant’s vantage point. The divergence in the
normals can be quickly calculated using a dot product.
We assert that an agent cannot see a waypoint when the
waypoint’s normal and the agent’s normal have a dot
product less than .5. In our results section we show that
this improvement puts the performance of graph-based
planners on par with slower, more accurate planners.

4 OBSTACLE AVOIDANCE

As previously mentioned, crowd simulation algorithms
are composed mainly of two functions, a path planning
function and an obstacle avoidance function. The last
section detailed our path planning algorithm that im-
proves discrete geodesic algorithms to remove stalling
on arbitrary surfaces. In this section we detail our ob-
stacle avoidance algorithm, which improves significantly
upon [45].

4.1 2D Obstacle Avoidance Abstraction
At the heart of 2D crowd simulation algorithms is a
function that takes each agent and finds the best heading
and linear velocity for collision-free movement. If we call

7

this function 2DMove, then this function can be written
as:

2DMove : O ∈ (R2), a→ θ′, v′ (3)

Where O is a set of tuples in R2 that represent the head-
ing and distance to static and dynamic obstacles and a is
the location and heading of an agent. 2DMove uses the
heading and distance to obstacles to choose a change
in motion for collision-free movement. This change in
motion is represented by the outputs of 2DMove, with
θ′ and v′ representing the agent’s change in angle and
linear velocity respectively.

The set of 2D agent-based crowd algorithms that
implement the function ObstacleAvoidance (or a very
similar function) includes social forces [15], RVO [17],
HiDAC [23], and anticipation [46]. Almost all 2D crowd
simulation algorithms start their implementations of
2DMove by doing two things: they ignore distant obsta-
cles and they change the absolute locations of obstacles
into relative radial offset values about a. Both of these
processes are important because they play important
roles in producing realistic crowd movement on arbi-
trary surfaces.

Determining relevant obstacles can be done using a
2DRelevant function that quickly finds a subset of all
the obstacles in a scene that are relevant to the current
agent. Formally, 2DRelevant can be defined as:

2DRelevant : a,O → ORelevant ⊆ O (4)

where a is the agent in question, O is the set of all
obstacles, and the result ORelevant ⊆ O gives us obstacles
that are relevant to 2DMove. Without a Relevant func-
tion, crowd simulation algorithms can be O(n2) since
the angle and distance between each pair of agents must
be calculated. Once the 2DRelevant function has found
a small subset of obstacles, the Offset function loops
over each obstacle in ORelevant and finds the angle and
distance to the obstacle. Off is a set containing a tuple
in the power set of angles and distances.

2DOffset : a, o ∈ ORelevant → Off ∈ (θ × d) (5)

Once all the offsets to all relevant obstacles are cal-
culated, they are put in a set R. Using R, collision-
free movement for agents can be found using some
2DMoveRelevant function as follows:

2DMoveRelevant : R ∈ (θ × R), a→ θ′, v′ (6)

4.2 3D Obstacle Avoidance Abstraction
It is not surprising that previous 3D crowd simulation
research (e.g. Torchelsen et al. [44]) has taken a similar
approach to the 2D crowd simulation work. In other
words, algorithms find relevant obstacles and then do
obstacle avoidance with values centered about the cur-
rent agent’s location. If during this process the offsets to
obstacles are converted from 3D offsets to 2D offsets then
an algorithm can use a 2DMoveRelevant to do obstacle
avoidance. By using 2DMoveRelevant an algorithm can

leverage the very successful work in 2D obstacle avoid-
ance without starting from scratch. Formally, we define
the 3D obstacle avoidance problem as follows:

3DMove : a,O ∈ R3,mesh→ θ′, v′ (7)

Previous work follows this pattern and usually provides
some sort of relevancy and offset function similar to the
ones in 2D work as follows:

3DRelevant : a,O → ORelevant ⊆ O (8)

3DOffset : a, o ∈ ORelevant → Off ∈ (θ × d) (9)

Unlike 2D surfaces, finding the set of relevant obsta-
cles and the radial offsets to obstacles’ locations is a
difficult problem on a 3D surface. Most previous ap-
proaches have not focused on the details of implement-
ing 3DRelevant and the results have contained clear ar-
tifacts. There are two main approaches to implementing
3DOffset: a surface distance approach and a Euclidean
approach.

4.3 Artifacts in Current Approaches
One can implement 3DOffset using a surface distance
algorithm such as A* or fast marching methods [3]. Once
the path to an obstacle is calculated, the distance to
the obstacles is the length of the path and the angle
to the obstacle is the angle of the first segment of the
path. Unfortunately, this fails to produce realistic crowd
simulation since agents can collide even when their
surface distance is extremely high. Fig. 6a depicts an
agent (the orange agent on the floor) and the obstacle
agent (the blue agent on the ceiling). The orange agent
is at most a few meters from the blue agent, but the
surface distance is the distance from the orange agent to
the nearest wall, up the wall, and back across the ceiling.
Even with an accurate surface distance algorithm, the
orange agent does not think it as about to collide with
the blue agent even though a collision is imminent.
The angle output of a surface path implementation of
3DOffset will produce similar artifacts.

The other method for determining angles and dis-
tances is to use a Euclidean distance (e.g. Torchelsen et
al. [44]). Given a vector v that is the vector between the

Fig. 6. Surface distance or Euclidean distance can pro-
duce false positives or negatives. a) A surface distance
false negative. b&c) Euclidean distance false positives.

8

agent in question a and obstacle, Euclidean distance is
the length of v. Euclidean angle is found by projecting v
onto the plane with the same normal as a. Torchelsen
et al. [44] accurately point out that Euclidean offset
does not struggle with the false negative issues of a
surface distance algorithm. However, instead of suffer-
ing from false negatives, a Euclidean implementation of
3DOffset suffers from the opposite problem: collision
false positives. Consider Fig. 6b and Fig. 6c. In both cases
a Euclidean distance approach will inaccurately report
that the orange agent is about to collide with the blue
agent. This is not correct and the agents will evade each
other even though there is no imminent collision. The
resulting unnatural motion is very obvious in multistory
buildings, ants on a tree, or people in a subway station.

Neither the surface path nor the Euclidean imple-
mentation of 3DOffset addresses the last issue with
crowds constrained to arbitrary surfaces in 3D space: the
non-spherical shape of virtual characters. On arbitrary
surfaces in 3D space, two agents can be on surfaces that
are perpendicular to each other. If the crowd simulation
algorithm only represents the collision surface of char-
acters with a small sphere near each agent’s feet, the
heads of two agents may be on a collision course even if
their collision spheres are not. Simply enlarging collision
spheres alone will cause jams even when agents could
easily pass each other.

Our approach to obstacle avoidance on arbitrary sur-
faces removes these problems. We remove false positives
and false negatives by improving the 3DRelevant func-
tion. We remove problems with the non-spherical nature
of agents by expanding the 3DOffset.

4.4 Removing These Artifacts

Notice that in all false positive cases (see Fig. 6b and
Fig. 6c), the obstacle agent that is incorrectly avoided
is not visible to the orange agent. Thus, by improving
3DRelevant to discard agents that are not visible to
the agent in question, a Euclidean implementation of
3DOffset would not have false positives. We have
verified this point through extensive testing. Resolv-
ing collision detection issues in 3DRelevant instead of
3DOffset is one of the key contributions of this work.

A full synthetic vision algorithm could be used to
determine which agents are mutually visible. This ap-
proach has been done using ray tracing by Massive [47]
and on the GPU in Ondrej et al.’s 2D crowd simulation
paper [46]. We do not embrace the ray tracing approach
of Massive since our system is designed to run in real-
time. Similarly, since we are placing agents on large
meshes with up to 100,000 triangles, rendering the view-
port of each agent to do synthetic vision on the GPU has
proven impractical.

Fortunately, we can use geometry to make a quick
and close approximation to agent visibility (see Fig. 7).
Since each agent is constrained to a manifold, we know
there is a surface at the feet of each agent. Leveraging

this, we add two additional checks to our 3DRelevant
function for each obstacle agent. We find the vector from
the agent in question to the agent that is proposed as an
obstacle. We call the vector from our agent’s head to
the other agent vhead and the vector from our agent’s
feet to the other agent vfeet. We then assume that the
surface the obstacle agent is standing on can be locally
approximated by a one to two meter radius circle at its
feet and that the normal of this circle is the same as the
obstacle agent’s normal.

To do our approximate vision algorithm, we check two
cases. First, we check to see if vhead and the agent’s up
vector have a positive dot product. This means that the
agent has to look up to see the obstacle agent. If this is
the case, then we check to see if vhead penetrates the cir-
cle about the obstacle agent’s feet. If vhead penetrates this
circle, then we remove this agent from the set ORelevant.
We make this assertion because we have very strong
evidence that there is no way that the obstacle agent
is currently visible. We further assert that if the other
agent’s head is a full body length above our agent, then
they are not visible. Second, we then check to see if our
agent’s up vector and vfeet have a negative dot product.
If so, our agent would have to look through the floor
to see the other agent. Thus, we have strong evidence
that the obstacle agent is not visible and we remove
the other agent from ORelevant. This approximation is
not guaranteed to exactly match a full synthetic vision
algorithm, but in practice there are no false positives or
false negatives in the crowd movement.

The choice of a one to two meter disc is not arbitrary.
Since two meters is approximately the height of our
agents (the virtual model we use is quite tall) the disc
has the same radius as the height of our agent. This
is important because if it were larger than the height
of our agent, then two agents approaching at a right
angle (such as the corner of a cube) would incorrectly
remove each other from the relevant obstacle set when
they could actually see each other. On the other hand,
stride length is generally at least a meter, which provides
a logical lower bound on local flatness of the surface at
an agent’s feet. A radius smaller than a stride’s width
would mean the agent would not be able to plant its feet
on the surface. We saw no visible difference in behavior
in our agents with values between values of 1 and 2
meters. In cases where the height of the agents or their
stride differs from these bounds, the size of the disc can
be trivially changed.

This improvement to 3DRelevant does not handle
the non-spherical nature of agents. In the 2D crowd
simulation, the fact that agents are taller than they are
wide is irrelevant, but in the 3D case this becomes
important. There are two simple but error-prone ways
of handling this problem. One solution is to represent
the collision area of an agent with a small sphere about
its feet. Unfortunately this leaves the torso and head of
the agent exposed to collisions. Another approach would
be to surround each agent by a sphere whose diameter

9

Fig. 7. Our improvement to the Relevant function. The
relevant agent (orange) checks if the vector to a possible
obstacle agents penetrates an approximate surface at
each agent’s feet (dotted blue line). If the vector pen-
etrates these surfaces (dashed red arrow) the obstacle
agent is not considered relevant. If the vector does not
penetrate (lighter green arrow) the agent is considered
relevant.

Fig. 8. A surface with agents close together on the ceiling
and floor. Without an accurate distance and angle func-
tion, agents will run into each other.

is the height of the agent. However, this would make
agents passing each other incorrectly think they were in
collision.

To resolve this problem, we define the collision sur-
face of agents using multiple volumes instead of just
one. This idea has been previously used in 2D crowd
simulation to allow very dense 2D crowd simulations
and to account for an agent’s stride (see [22]). However,
this has never been used in 3D crowd simulation to
deal with an agent’s height. Instead of one small sphere
or one giant sphere, we define each character with
multiple spheres in a way that approximates a cylinder
and covers the agent completely. We choose spheres
over other geometric primitives since spheres allow for
simple collision detection and avoidance. Additionally,
it is trivial to change the placement and number of the
spheres to match the shape of agents (i.e. more for taller
agents or fewer for shorter agents).

For the center of each of these spheres, we use a
traditional implementation of 3DOffset and return the
union of tuples. This is the reason we defined 3DOffset
as returning a set in Eqn. 9. Formally, if oup is the normal
of the obstacle agent for which we want a more realistic

representation, then our implementation of 3DOffset is
as follows:

3DOffsetImproved =
2⋃

i=0

Offset(a, o+ i · oup) (10)

These improvements have a minuscule computational
footprint, have a clear impact on the motion of the agents
in a crowd, and can handle intentionally complex scenes
such as that in Fig. 8. We give numerical results for
the effectiveness of our obstacle avoidance technique in
Sec. 5.

4.5 Density
Every crowd simulation has a density limitation, or a
point at which agents will stall simply because there are
too many agents in a choke point to proceed without
collisions. Our algorithm does not propose a new ob-
stacle avoidance algorithm but runs on top of almost
any previous 2D crowd simulation algorithm. Thus, the
density limitations of our implementation depend on the
current underlying 2D crowd simulation. As expected,
velocity obstacles handled dense situations better than
social forces. Our algorithm could run with methods that
allow for advanced jamming resolution such as pushing
(e.g. Pelechano et al. [23]) or the use of complex jamming
resolution rules (e.g. Singh et al. [31]).

5 RESULTS

The goal of this work is to present our “surface as a
whole” approach to crowd simulation. We have asserted
that by using discrete geodesic algorithms, our path
planning improvements, and our approximate vision
algorithm we can simulate crowds across any topology.
We validate these claims by giving evidence of our
algorithm’s completeness, speed, quality, and correct-
ness. First, we show that our path planning approach
always finds path in non-degenerate cases. Then we give
overall speed results for our algorithm. Next, we give
results about specific details of our path planning im-
provements. These results show that our improvements
produce quality motion that can actually increase the
frame rate of the simulation. Lastly, we give results about
our approximate vision algorithm. These results show
the correctness of our algorithm since our collision rates
are practically zero.

5.1 Discrete Geodesic Speed Results
In Sec. 3.2 we asserted that a “surfaces as a whole” ap-
proach would be effective for crowd simulation on arbi-
trary topologies. We also asserted that discrete geodesic
algorithms would always find a path if one existed and
that they run at real-time rates on high triangle-count
surfaces.

Our first claim is that our path planning algorithm
will find a path if one exists. There are numerous proofs
showing that graph-based search algorithms will find a

10

Fig. 9. Our whole surface approach to simulation produces spontaneous global effects seen in real crowds, such as
the swirl pattern shown here.

Fig. 10. Our agents move naturally and avoid collisions on complex surfaces even with perpendicular edges (ants in a
room above) or when there is no distortion-free mapping from 3D to 2.5D (agents on the Stanford Bunny below).

path between two nodes if one exists (e.g. [48]). Thus,
as long as an agent is connected by the surface to its
destination, our graph-based planners will always find
a path. We also used an iterative refinement discrete
geodesic algorithm (detailed later). This algorithm starts
off with a graph-based step, which means that it too will
always find a path if one exists. Other discrete geodesic
algorithms discussed in our previous work section have
corresponding proofs of their completeness (e.g. [10]).
Our experience verified what these proofs establish. On
all our surfaces all our agents were able to find a path
from their initial locations to their destinations. Our path
planning improvements also produce feasible paths as
long as the surface was not degenerate. As noted earlier,
in this paper we do not address the problem of finding
walkable surfaces. Thus, the width and curvature of our
walkways were such that corridors would stay on our
surface. Future work that combines work on finding
walkable surface areas could label areas of the surface
that are not wide enough for a full corridor expansion.
In that case the algorithm could make sure the corridor
does not expand wider than thin walkways.

To verify our speed claims about discrete geodesic
algorithms, we generated crowds of 1,000 agents across
an array of surfaces inspired by architecture, na-
ture, science fiction, insect colonies, and topologi-
cally unique surfaces. These models range from a
dozen triangles to over a hundred thousand, as listed

in Table 1. Many of these surfaces are shown in
figures (see column two of Table 1). The website
http://sites.google.com/site/academicreviewdata/ con-
tains mesh files and images for the surfaces shown in
Table 1. This test suite contains more surface features
and higher polygon counts than any other test suite
we were able to find. This adds validity to our claim
that our algorithm works on a larger set of surfaces
than any previous work. Our tests were run on an Intel
17-2600 processor. Computation was done on the CPU
(as opposed to previous focused on the GPU) using
managed code written in C#.

The results in Table 1 give the frame rates using our
improvements. These tests were run using a weighted
A* algorithm for path planning and two different 2D ob-
stacle avoidance algorithms: social forces and reciprocal
velocity obstacles. The results are sorted by the number
of triangles in each mesh. In general, the surface area of
each mesh was proportional to the number of triangles.
Thus, obstacle avoidance tended to be the dominant
computational requirement for lower polygon-count sur-
faces while path planning tended to be the dominant
requirement on higher polygon-count surfaces. Each trial
had 1,000 agents. This table also lists how long it took
our path planning algorithm to plan on the first frame.
This is noteworthy since all agents must do path plan-
ning during this frame. Thus, this result gives a sense of
how long it takes to compute paths for 1,000 agents.

11

TABLE 1
Results from our crowd simulation on 30 surfaces.

Name Example FPS - 1,000 agents 1st Path
(Triangles) Fig.s S. Forces RVO Plan (s)

One Triangle (1) - 514.25 330.83 0.07
Simple Cube (12) - 155.01 60.56 0.29

Building Exterior (68) - 172.32 66.67 0.29
Soccer Ball (80) Fig 3 185.46 95.07 0.52

Bucky (108) - 192.89 87.86 0.08
Building 1 (174) Fig 1j 129.33 55.73 0.377

Building w/ Exit (226) - 149.35 55.72 0.55
Building 2 (232) - 310.29 206.05 0.35

Cube Holes (864) - 202.34 92.31 0.18
Inverse Cube (1.2k) - 189.61 96.39 0.55

Floor and Ceiling (1.6k) Fig 8 160.3 73.97 0.46
Globe (1.7k) Fig 1f 178.04 50.86 0.34

Golevka Asteroid (2k) Fig 1b 232.21 153.84 0.35
Kleopatra Asteroid (2k) - 430.89 274.08 0.32

Ants on Food (2.3k) Fig 1h 198.48 88.36 0.33
Mobius w/ Holes (3.2k) Fig 1d 170.19 78.87 0.6

Torus (3.2k) Fig 1c 158.6 61.41 0.43
Mobius Strip (3.2k) - 170.07 77.94 0.8
Reverse Torus (3.2k) - 193.9 90.87 0.43

Room 2 (3.6k) Fig 10 160.23 55.29 0.41
Room 1 (3.6k) Fig 1i 180.1 57.51 0.42
Asteroid (6.4k) - 211.19 100.63 0.52

Tree (14k) Fig 1g 175.22 79.3 2.62
Medium Cube (19k) - 143.72 80.82 3.62
Twisted Wire (40k) - 55.51 49.49 31.13
Tetrahedron (59k) Fig 1a 170.19 147.05 6.31

Stanford Bunny (70k) Fig 1e 65.94 51.79 15.8
Abstract Art (102k) - 128.81 120.38 9.13
Huge Cube (108k) - 115.87 105.68 3.15

Olympic Rings (109k) - 47.93 41.4 10.86

All of our models ran at 40 frames per second or faster,
including the Stanford bunny with over 69,000 triangles
and our abstract art, Olympic rings, and huge cube
models, all of which had more than 100,000 triangles.
Note also that the social forces results ran significantly
faster than RVO, indicating that not all of our time was
spent in path planning. Note also that the the first frame
path planning time only exceeded ten seconds in three
of our cases. Inspection of the path planning showed
that the nature of these surfaces made it difficult for
the A* heuristic to find the shortest path quickly. This
is something our twisted wire surface was specifically
designed to test, so we are not surprised by this result.

We believe these results validate our assertion that
using discrete geodesics is both a complete and quick
way to do path planning. The following results show
that our path planning results produce quality motion.

5.2 Path Planning Results
In our path planning section, Sec. 3, we asserted that our
away from edges, corridors, and line of sight improve-
ments could produce natural crowd movement on sur-
faces of arbitrary topology. We validate these claims by
showing that our improvements remove stalling. Then
we show that our improvements lead to frequent desti-
nation arrivals even with less-accurate path planners. We

then show that our improvements actually increase our
frame rate since they reduce computationally-expensive
jamming situations. Combined with our previous speed
results, these results validate our claim that our approach
creates quality motion on arbitrary surfaces with little or
no stalling.

In Sec. 3.1, we discussed stalling as a quantitative way
of measuring the quality of agent motion in a crowd
simulation. To measure quality of our path planning
improvements, we ran our simulation with and with-
out our improvements. We then tracked the amount
of stalling. Our results show that our path planning
improvements clearly reduce stalling as shown in Fig. 11.

To generate the results in Fig. 11, we created crowds
of 1,000 agents in a multistory building (see Fig. 1j). We
chose this surface for our tests since the sharp turns on
the surface made it the most prone to stalling. In our first
trials agents had no improvements, next agents only had
the line of sight improvement, then agents had the line
of sight and the away from walls improvement, and last
the agents had all improvements including the corridors
improvement. For each crowd we considered an agent
stalled if it had not moved more than a shoulder’s
width in five seconds. We ran our test for 80 seconds.
Being stalled was almost always the result of being in
a crowd jam or becoming lost by not getting around
the corner of the stairs. For each crowd we averaged
the percent of stalled agents for each frame. Without
any improvements, over ten percent of the agents were
stalled by the end of the simulation. With the line of
sight optimization alone about five percent of agents
were stalled. With the away from edges and line of sight
improvement jamming fell to about half of a percent,
but jamming was still noticeable. With all improvements
including the corridors improvement, the percentage
stayed at practically zero during the entire simulation.
We tested our improvements cumulatively instead of
by themselves since some of the improvements depend
algorithmically on each other to work (e.g. corridors
depends on away from edges). Both visually and nu-

Fig. 11. Stalling versus time in 80s of simulation on
an surface similar to Fig. 5. Each of our improvements
reduced stalling, but the line of sight and away from edges
improvements still showed clear stalling. All improve-
ments combined (listed as corridors) reduced stalling to
practically 0 throughout the simulation.

12

Fig. 12. How the underlying discrete geodesic algorithm
affects speed and performance on our Olympic Rings
environment (see Table 1). Speed is given in frames per
second. Performance is measured by arrival frequency.
This figure shows that our improvements let us increase
speed without reducing performance.

merically the improvement was dramatic.
As mentioned in our comments on density, there were

situations in which we could cause stalling even with all
our improvements. One way to cause stalling was simply
to increase the size of agents until there was no way for
them to resolve collisions. For example, we could simply
make the agents on the Mobius strip larger and larger
until they could not pass each other. Also, sometimes
after long simulation times jams formed as the result of
rare and complicated agent patterns that social forces or
RVO could not resolve. We are interested in using more
complex jam-resolution algorithms in future work to see
if these rare jams could be resolved. The only surface
feature that seemed stall-prone with our approach were
gorge-like structures. In gorge-like places two agents
going opposite directions could jam since they were
boxed in by the sides. The Stanford Bunny has such a
feature around part of its neck. One piece of possible
work in the area of navigable mesh generation could be
to try and detect thin gorges and remove them from the
mesh.

We further analyzed the speed and performance of
our algorithm based on the underlying discrete geodesic
algorithm. Fig. 12 shows how different discrete geodesic
algorithms affect the speed and performance of our
algorithm. Speed is measured in frames per second. Per-
formance is measured in how frequently agents arrive
at their destinations. Better path planning should give
agents shorter paths to their destinations. This in turn
should result in agents reaching destinations quicker,
resulting in better performance as measured by arrival
frequency. At the beginning of each simulation agents
are given a random location with a random destination.
When an agent reaches its destination it is assigned a
new random destination and the destHits count incre-
ments. At the end of each simulation we divide destHits
by the number of frames and agents. The resulting

number represents the probability of an agent reaching
it destinations on any given frame. Since this normalized
value is too small to be seen on this graph, we scaled by
100,000 to get the arrival frequency reported in Fig. 12.
Unlike normalized values in [26], this metric is only
meaningful when comparing algorithms on the same
surface. However, since our simulations run 1,000 agents
the arrival frequency results are a robust indicator of our
path planning algorithm’s effectiveness.

We used four different discrete geodesic algorithms
in Fig. 12: weighted A*, A*, Dijstra’s, and Martinez et
al.’s iterative refinement algorithm [12]. The first three
algorithms only return paths that follow the vertices
of triangles. The weighted A* algorithm is the fastest
of the three but has the possibility of returning the
longest paths. The iterative refinement algorithm returns
shorter paths. It also returns the absolute shortest path
if its initial guess is close to the true shortest path.
We could have used any number of algorithms as the
seed to the iterative refinement algorithm, but chose
weighted A* for speed reasons. Results are shown from
our Olympic Ring model (see Table 1) since it has the
highest triangle count of any of our surfaces. Notice in
this graph that there is a monotonic decrease in speed
as we progress from less accurate to more accurate path
finding algorithms. This is expected since more accurate
algorithms require more computation. However, notice
that the performance as measured in arrival frequency
remains largely unchanged. The reason is that our line of
sight algorithm compensates for the weaknesses of less
accurate path planners. Thus, with our improvements,
weighted A* runs three times faster than the iterative
algorithm but produces results of equal quality.

Fig. 13 shows the frames per second for our algorithm
moving 1,000 agents in a 15-story building (Fig. 1j).
Results are shown for crowds with no improvements,
line of sight only, away from edges and line of sight,
and all our optimizations including corridors. Each bar
shows the frames per second with the error bars showing

Fig. 13. Graph of how our improvements affect simulation
speed running 1,000 agents in a 15-story building (see
Fig. 1j). Error bars show the frames per second variance
across multiple trials. Notice that of all our improvements
combined (labeled corridors) ran fastest.

13

the variance of our trials. Our initial goal in producing
these results was to see how much computation time
each of our improvements cost. Notice that adding
the line of sight and away from edges optimizations
slightly reduced the frames per second of our algorithm.
However, all the optimizations combined resulted in a
net increase in frames per second. This is true even
compared to no improvements at all. The reason is that
when agents stall, the computation time increases as
each agent has more and more agents against which it
does obstacle avoidance. When agents flow by each other
naturally then each agent only has to do collision avoid-
ance calculations against a few other agents. Thus, our
improvements combined resulted in a net reduction in
computation time and net increase in frames per second.
This speed improvement is statistically significant with
a p value of .005.

5.3 Obstacle Avoidance Results
We also used manual inspection and statistical analysis
to verify the effectiveness of our obstacle avoidance
approach. In doing so, we looked to see that our algo-
rithm did not suffer from the false negatives and false
positives of previous work and that our approach did
not suffer from collisions in general. To do this we ran
our algorithm using three very different 2D local obstacle
avoidance algorithms: a social forces model based on
Helbing and Molnar’s work [15], an anticipation model
based on Ondrej et al. [46], and reciprocal velocity
obstacles (RVO) [17]. We ran each of these on all 30
of our surfaces, which we detailed earlier. For each 2D
obstacle avoidance algorithm we found the median col-
lision percentage for the simulation. The only algorithm
with a noticeable collision rate was our implementa-
tion of the anticipation model, which we found also
had noticeable collision rates in our purely 2D crowd
simulation framework. Thus, even though the timing
results mirror those of reciprocal velocity obstacles, we
do not include them in our table. Using social forces
or RVO resulted in negligible median collision rates of
.05% and .009% respectively. Visual inspect corroborated
this quantitative result: We found that our agents did not
have the clear collision false positives and false negatives
of a surface distance or Euclidean distance approach.
We believe these results validate our obstacle avoidance
algorithm for agents on arbitrary 3D surfaces.

In addition to the statistical measures listed above, we
noticed several features of our simulated crowds that
closely resembled real crowds. For example, as shown
in Fig. 5, agents spontaneously form lanes even on 3D
surfaces. Interesting locations where such lanes would
form include the inside of the torus (see Fig. 1c) and
inner edge of the Mobius strip (see Fig. 1d). Similarly, as
shown in Fig. 9, our agents produce the swirling effect
noted in real crowds. Notice that we had the agents
converge at one of the poles of the globe where the
tessellation of the surface is the highest and the compu-
tation is the most difficult. Despite the high density of

triangles, the agents moved naturally around each other
and reached their destinations.

Combined, we believe these results validate our claim
that a “surface as a whole” approach to crowd sim-
ulation produces natural movement across surfaces of
any topology. Our algorithm is complete because it will
always find a path if one exists, it runs at real-time
speeds even on high triangle-count surfaces, it produces
quality motion, and agents choose correct, collision-free
movements.

6 FUTURE WORK

Our “surface as a whole” approach is an effective way
of simulating crowds on arbitrary topologies and opens
up future work in several areas. As mentioned earlier,
algorithms such as corridors and navigation meshes (see
Sec. 2) have proven effective for 2/2.5D crowd path
planning. In Sec. 3 we explained why these approaches
are not suitable for arbitrary surfaces, but we are still
interested in studying the algorithmic changes required
to take these algorithms from 2D to 3D. Additionally,
the results of this work open up new areas in surface
analysis for finding walkable areas on a larger set of
surfaces than the research now addresses. We are also
interested in objectively comparing our algorithm to real
footage of crowds on 3D surfaces. This idea opens up
interesting avenues in computer vision, including ap-
propriate ways of tracking motion of people in multiple
stories of buildings or insects crawling around on highly
concave surfaces.

REFERENCES
[1] F. Lamarche and S. Donikian, “Crowd of virtual humans: A new

approach for real time navigation in complex and structured
environments,” Computer Graphics Forum, vol. 23, no. 3, pp. 509–
518, 2004.

[2] S. Singh, M. Kapadia, B. Hewlett, G. Reinman, and P. Faloutsos,
“A modular framework for adaptive agent-based steering,” Sym-
posium on Interactive 3D Graphics and Games, pp. PAGE–9, 2011.

[3] J. Sethian, “Fast marching methods,” SIAM review, vol. 41, pp.
199–235, 1999.

[4] R. Geraerts and M. Overmars, “The corridor map method: A
general framework for real-time high-quality path planning,”
Proceedings of Computer Animation and Virtual Worlds, vol. 18, no. 2,
pp. 107–119, 2007.

[5] M. Kallmann, “Navigation queries from triangular meshes,” Pro-
ceedings of Motion in Games, pp. 230–241, 2010.

[6] A. Kamphuis, M. Mooijekind, D. Nieuwenhuisen, and M. Over-
mars, “Automatic construction of roadmaps for path planning
in games,” International Conference on Computer Games: Artificial
Intelligence, Design and Education, pp. 285–292, 2004.

[7] J. Pettré, P. Ciechomski, J. Maı̈m, B. Yersin, J. Laumond, and
D. Thalmann, “Real-time navigating crowds: Scalable simulation
and rendering,” Proceedings of Computer Animation and Virtual
Worlds, vol. 17, no. 3-4, pp. 445–455, 2006.

[8] D. Hale, “A growth-based approach to the automatic generation
of navigation meshes,” Dissertation, The University of North Car-
olina Charlotte, 2012.

[9] S. Curtis, J. Snape, and D. Manocha, “Way portals: Efficient multi-
agent navigation with line-segment goals,” Proceedings of ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games, pp.
15–22, 2012.

[10] J. Mitchell, D. Mount, and C. Papadimitriou, “The discrete
geodesic problem,” SIAM Journal on Computing, vol. 16, no. 4,
pp. 647–668, 1987.

14

[11] J. Chen and Y. Han, “Shortest paths on a polyhedron,” Computa-
tional Geometry, pp. 360–369, 1990.

[12] D. Martı́nez, L. Velho, and P. Carvalho, “Computing geodesics
on triangular meshes,” Computers & Graphics, vol. 29, no. 5, pp.
667–675, 2005.

[13] R. Kimmel and J. Sethian, “Computing geodesic paths on mani-
folds,” National Academy of Sciences of the United States of America,
vol. 95, no. 15, p. 8431, 1998.

[14] C. Reynolds, “Flocks, herds and schools: A distributed behav-
ioral model,” Proceedings of ACM SIGGRAPH Computer Graphics,
vol. 21, no. 4, pp. 25–34, 1987.

[15] D. Helbing and P. Molnar, “Social force model for pedestrian
dynamics,” Physical Review, vol. 51, no. 5, pp. 4282–4286, 1995.

[16] P. Fiorini and Z. Shiller, “Motion planning in dynamic environ-
ments using velocity obstacles,” The International Journal of Robotics
Research, vol. 17, no. 7, p. 760, 1998.

[17] J. Van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity
obstacles for real-time multi-agent navigation,” Proceedings of
Robotics and Automation, pp. 1928–1935, 2008.

[18] S. Guy, J. Chhugani, S. Curtis, P. Dubey, M. Lin, and D. Manocha,
“Pledestrians: A least-effort approach to crowd simulation,” Pro-
ceedings of ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, pp. 119–128, 2010.

[19] N. Courty and S. Musse, “Fastcrowd: Real-time simulation and
interaction with large crowds based on graphics hardware,” Short
Paper in ACM SIGGRAPH/EuroGraphics Symposium on Computer
Animation, pp. 177–187, 2004.

[20] R. Narain, A. Golas, S. Curtis, and M. Lin, “Aggregate dynamics
for dense crowd simulation,” ACM Transactions on Graphics (TOG),
vol. 28, no. 5, p. 122, 2009.

[21] I. Karamouzas, P. Heil, P. van Beek, and M. Overmars, “A
predictive collision avoidance model for pedestrian simulation,”
Proceedings of Motion in Games, pp. 41–52, 2009.

[22] S. Singh, M. Kapadia, G. Reinman, and P. Faloutsos, “Footstep
navigation for dynamic crowds,” Proceedings of Computer Anima-
tion and Virtual Worlds, vol. 22, no. 3–3, pp. 151–158, 2011.

[23] N. Pelechano, J. Allbeck, and N. Badler, “Controlling individual
agents in high-density crowd simulation,” Proceedings of ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, pp.
99–108, 2007.

[24] A. Treuille, S. Cooper, and Z. Popović, “Continuum crowds,”
ACM Transactions on Graphics (TOG), vol. 25, no. 3, pp. 1160–1168,
2006.

[25] H. Jiang, W. Xu, T. Mao, C. Li, S. Xia, and Z. Wang, “Contin-
uum crowd simulation in complex environments,” Computers &
Graphics, vol. 34, no. 5, pp. 537–544, 2010.

[26] M. Kapadia, M. Wang, S. Singh, G. Reinman, and P. Faloutsos,
“Scenario space: characterizing coverage, quality, and failure of
steering algorithms,” Proceedings of ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, pp. 53–62, 2011.

[27] M. Kapadia, M. Wang, G. Reinman, and P. Faloutsos, “Improved
benchmarking for steering algorithms,” Proceedings of Motion in
Games, pp. 266–277, 2011.

[28] N. Pelechano, C. Stocker, J. Allbeck, and N. Badler, “Being a part
of the crowd: Towards validating VR crowds using presence,”
Autonomous Agents and Multiagent Systems, pp. 136–142, 2008.

[29] S. Singh, M. Kapadia, P. Faloutsos, and G. Reinman, “Steerbench:
A benchmark suite for evaluating steering behaviors,” Proceedings
of Computer Animation and Virtual Worlds, vol. 20, no. 5-6, pp. 533–
548, 2009.

[30] S. Singh, M. Naik, M. Kapadia, P. Faloutsos, and G. Reinman,
“Watch out! a framework for evaluating steering behaviors,”
Motion in Games, pp. 200–209, 2008.

[31] S. Singh, M. Kapadia, P. Faloutsos, and G. Reinman, “An open
framework for developing, evaluating, and sharing steering algo-
rithms,” Proceedings of Motion in Games, pp. 158–169, 2009.

[32] D. Thalmann and S. R. Musse, Crowd simulation. Wiley Online
Library, 2007.

[33] N. Pelechano, J. Allbeck, and N. Badler, “Virtual crowds: Methods,
simulation, and control,” Synthesis Lectures on Computer Graphics
and Animation, vol. 3, no. 1, pp. 1–176, 2008.

[34] W. Shao and D. Terzopoulos, “Autonomous pedestrians,” Pro-
ceedings of ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, pp. 19–28, 2005.

[35] F. Lamarche, “Topoplan: A topological path planner for real time
human navigation under floor and ceiling constraints,” Computer
Graphics Forum, vol. 28, no. 2, pp. 649–658, 2009.

[36] H. Jiang, W. Xu, T. Mao, C. Li, S. Xia, and Z. Wang, “A semantic
environment model for crowd simulation in multilayered com-
plex environment,” Proceedings of the 16th ACM Symposium on
Virtual Reality Software and Technology, pp. 191–198, 2009.

[37] L. Deusdado, A. Fernandes, and O. Belo, “Path planning for
complex 3d multilevel environments,” Proceedings of the 24th
Spring Conference on Computer Graphics, pp. 187–194, 2008.

[38] W. van Toll, A. Cook, and R. Geraerts, “A navigation mesh for
dynamic environments,” Proceedings of Computer Animation and
Virtual Worlds, vol. 23, no. 6, pp. 535–546, 2012.

[39] S. Rodriguez, J. Denny, A. Mahadevan, J. Vu, J. Burgos, T. Zourn-
tos, and N. Amato, “Roadmap-based pursuit evation in 3D struc-
tures,” Proceedings of Computer Animation and Social Agents (CASA),
2011.

[40] N. Sturtevant, “A sparse grid representation for dynamic three-
dimensional worlds,” Proceedings of the Seventh AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment, pp.
73–78, 2011.

[41] T. Stoyanov, M. Magnusson, H. Andreasson, and A. Lilienthal,
“Path planning in 3D environments using the normal distribu-
tions transform,” Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems. IROS, pp. 3263–3268, 2010.

[42] T. Jund, P. Kraemer, and D. Cazier, “A unified structure for crowd
simulation,” Proceedings of Computer Animation and Virtual Worlds,
vol. 23, no. 3–4, pp. 311–320, 2012.

[43] S. Levine, Y. Lee, V. Koltun, and Z. Popović, “Space-time planning
with parameterized locomotion controllers,” ACM Transactions on
Graphics (TOG), vol. 30, no. 3, p. 23, 2011.

[44] R. Torchelsen, L. Scheidegger, G. Oliveira, R. Bastos, and J. Comba,
“Real-time multi-agent path planning on arbitrary surfaces,” Pro-
ceedings of ACM SIGGRAPH symposium on Interactive 3D Graphics
and Games, pp. 47–54, 2010.

[45] B. Ricks and P. Egbert, “Improved obstacle relevancy, distance,
and angle for crowds constrained to arbitrary manifolds in 3D
space,” Proceedings of Eurographics, pp. 73–76, 2012.

[46] J. Ondřej, J. Pettré, A. Olivier, and S. Donikian, “A synthetic-vision
based steering approach for crowd simulation,” ACM Transactions
on Graphics (TOG), vol. 29, no. 4, pp. 123:1–123:9, 2010.

[47] Massive, “http://www.massivesoftware.com/,” URL, November
2012.

[48] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” Systems Science
and Cybernetics, IEEE Transactions on, vol. 4, no. 2, pp. 100–107,
1968.

Brian C. Ricks is currently a computer science
doctoral student at Brigham Young University.
Brian Ricks’ research interests include 3D crowd
simulation, social dynamics in crowds, and artic-
ulated motion. He work has been published in
the the Visual Computer journal, Intelligent Com-
puter Graphics, the proceedings of Eurograph-
ics, and the proceedings of Computer Graphics
International.

Parris K. Egbert is Computer Science Depart-
ment Chair at Brigham Young University. His
research includes real-time 3D computer graph-
ics, global illumination, tools for computer anima-
tion, and the creation and navigation of virtual
environments. His work has been published in
SIGGRAPH, CVPR, Computational Intelligence,
and TOG. Dr. Egbert is on the BYU’s Center for
Animation executive committee where student
films have won 12 Student Emmy awards.

